Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38428428

RESUMEN

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/diagnóstico , Antioxidantes/uso terapéutico , Ubiquinona/uso terapéutico , Ubiquinona/genética , Mutación
2.
Ophthalmol Retina ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219857

RESUMEN

PURPOSE: Inherited retinal disease (IRD) is a leading cause of blindness. Recent advances in gene-directed therapies highlight the importance of understanding the genetic basis of these disorders. This study details the molecular spectrum in a large United Kingdom (UK) IRD patient cohort. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients with IRD who attended the Genetics Service at Moorfields Eye Hospital between 2003 and July 2020, in whom a molecular diagnosis was identified. METHODS: Genetic testing was undertaken via a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. Likely disease-causing variants were identified from entries within the genetics module of the hospital electronic patient record (OpenEyes Electronic Medical Record). Analysis was restricted to only genes listed in the Genomics England PanelApp R32 Retinal Disorders panel (version 3.24), which includes 412 genes associated with IRD. Manual curation ensured consistent variant annotation and included only plausible disease-associated variants. MAIN OUTCOME MEASURES: Detailed analysis was performed for variants in the 5 most frequent genes (ABCA4, USH2A, RPGR, PRPH2, and BEST1), as well as for the most common variants encountered in the IRD study cohort. RESULTS: We identified 4415 individuals from 3953 families with molecularly diagnosed IRD (variants in 166 genes). Of the families, 42.7% had variants in 1 of the 5 most common IRD genes. Complex disease alleles contributed to disease in 16.9% of affected families with ABCA4-associated retinopathy. USH2A exon 13 variants were identified in 43% of affected individuals with USH2A-associated IRD. Of the RPGR variants, 71% were clustered in the ORF15 region. PRPH2 and BEST1 variants were associated with a range of dominant and recessive IRD phenotypes. Of the 20 most prevalent variants identified, 5 were not in the most common genes; these included founder variants in CNGB3, BBS1, TIMP3, EFEMP1, and RP1. CONCLUSIONS: We describe the most common pathogenic IRD alleles in a large single-center multiethnic UK cohort and the burden of disease, in terms of families affected, attributable to these variants. Our findings will inform IRD diagnoses in future patients and help delineate the cohort of patients eligible for gene-directed therapies under development. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Mov Disord ; 39(1): 203-209, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037516

RESUMEN

BACKGROUND: ATXN2 is the causative gene of spinocerebellar ataxia type 2 (SCA2) and has been implicated in glaucoma pathogenesis. Therefore, studying ocular changes in SCA2 could uncover clinically relevant changes. OBJECTIVE: The aim was to investigate optic disc and retinal architecture in SCA2. METHODS: We evaluated 14 patients with SCA2 and 26 controls who underwent intraocular pressure measurement, fundoscopy, and macular and peripapillary spectral domain optical coherence tomography (SD-OCT). We compared SD-OCT measurements in SCA2 and controls, and the frequency of glaucomatous changes among SCA2, controls, and 76 patients with other SCAs (types 1, 3, 6, and 7). RESULTS: The macula, peripapillary retinal nerve fiber and inner plexiform layers were thinner in SCA2 than in controls. Increased cup-to-disc ratio was more frequent in SCA2 than in controls and other SCAs. CONCLUSIONS: Ocular changes are part of SCA2 phenotype. Future studies should further investigate retinal and optic nerve architecture in this disorder.


Asunto(s)
Mácula Lútea , Disco Óptico , Humanos , Disco Óptico/patología , Células Ganglionares de la Retina/patología , Retina/diagnóstico por imagen , Retina/patología , Mácula Lútea/patología , Tomografía de Coherencia Óptica/métodos
5.
Eye (Lond) ; 37(12): 2416-2425, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37185957

RESUMEN

Historically, distinct mitochondrial syndromes were recognised clinically by their ocular features. Due to their predilection for metabolically active tissue, mitochondrial diseases frequently involve the eye, resulting in a range of ophthalmic manifestations including progressive external ophthalmoplegia, retinopathy and optic neuropathy, as well as deficiencies of the retrochiasmal visual pathway. With the wider availability of genetic testing in clinical practice, it is now recognised that genotype-phenotype correlations in mitochondrial diseases can be imprecise: many classic syndromes can be associated with multiple genes and genetic variants, and the same genetic variant can have multiple clinical presentations, including subclinical ophthalmic manifestations in individuals who are otherwise asymptomatic. Previously considered rare diseases with no effective treatments, considerable progress has been made in our understanding of mitochondrial diseases with new therapies emerging, in particular, gene therapy for inherited optic neuropathies.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades del Nervio Óptico , Enfermedades de la Retina , Humanos , Síndrome , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades del Nervio Óptico/complicaciones , Enfermedades de la Retina/complicaciones
6.
Am J Ophthalmol ; 249: 99-107, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36543315

RESUMEN

PURPOSE: To investigate the clinical and molecular genetic features of childhood-onset Leber hereditary optic neuropathy (LHON) to gain a better understanding of the factors influencing the visual outcome in this atypical form of the disease. DESIGN: Retrospective cohort study. METHODS: We retrospectively included 2 cohorts of patients with LHON with onset of visual loss before the age of 12 years from Italy and the United Kingdom. Ophthalmologic evaluation, including best-corrected visual acuity, orthoptic evaluation, slit-lamp biomicroscopy, visual field testing, and optical coherence tomography, was considered. Patients were classified based on both the age of onset and the pattern of visual loss. RESULTS: A total of 68 patients were stratified based on the age of onset of visual loss: group 1 (<3 years): 14 patients (20.6%); group 2 (≥3 to <9 years): 27 patients (39.7%); and group 3 (≥9 to ≤12 years): 27 patients (39.7%). Patients in group 2 achieved a better visual outcome than those in group 3. Patients in groups 1 and 2 had better mean deviation on visual field testing than those in group 3. The mean ganglion cell layer thickness on optical coherence tomography in group 2 was higher than those in groups 1 and 3. Patients were also categorized based on the pattern of visual loss as follows: Subacute Bilateral: 54 patients (66.7%); Insidious Bilateral: 14 patients (17.3%); Unilateral: 9 patients (11.1%); and Subclinical Bilateral: 4 patients (4.9%). CONCLUSIONS: Children who lose vision from LHON before the age of 9 years have a better visual prognosis than those who become affected in later years, likely representing a "form frustre" of the disease.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Niño , Humanos , Preescolar , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/epidemiología , Atrofia Óptica Hereditaria de Leber/genética , Pronóstico , Estudios Retrospectivos , Pruebas del Campo Visual , Trastornos de la Visión/genética , Ceguera , Tomografía de Coherencia Óptica/métodos
7.
Ophthalmol Ther ; 12(1): 401-429, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36449262

RESUMEN

INTRODUCTION: Lenadogene nolparvovec is a promising novel gene therapy for patients with Leber hereditary optic neuropathy (LHON) carrying the m.11778G>A ND4 mutation (MT-ND4). A previous pooled analysis of phase 3 studies showed an improvement in visual acuity of patients injected with lenadogene nolparvovec compared to natural history. Here, we report updated results by incorporating data from the latest phase 3 trial REFLECT in the pool, increasing the number of treated patients from 76 to 174. METHODS: The visual acuity of 174 MT-ND4-carrying patients with LHON injected in one or both eyes with lenadogene nolparvovec from four pooled phase 3 studies (REVERSE, RESCUE and their long-term extension trial RESTORE; and REFLECT trial) was compared to the spontaneous evolution of an external control group of 208 matched patients from 11 natural history studies. RESULTS: Treated patients showed a clinically relevant and sustained improvement in their visual acuity when compared to natural history. Mean improvement versus natural history was - 0.30 logMAR (+ 15 ETDRS letters equivalent) at last observation (P < 0.01) with a maximal follow-up of 3.9 years after injection. Most treated eyes were on-chart as compared to less than half of natural history eyes at 48 months after vision loss (89.6% versus 48.1%; P < 0.01) and at last observation (76.1% versus 44.4%; P < 0.01). When we adjusted for covariates of interest (gender, age of onset, ethnicity, and duration of follow-up), the estimated mean gain was - 0.43 logMAR (+ 21.5 ETDRS letters equivalent) versus natural history at last observation (P < 0.0001). Treatment effect was consistent across all phase 3 clinical trials. Analyses from REFLECT suggest a larger treatment effect in patients receiving bilateral injection compared to unilateral injection. CONCLUSION: The efficacy of lenadogene nolparvovec in improving visual acuity in MT-ND4 LHON was confirmed in a large cohort of patients, compared to the spontaneous natural history decline. Bilateral injection of gene therapy may offer added benefits over unilateral injection. TRIAL REGISTRATION NUMBERS: NCT02652780 (REVERSE); NCT02652767 (RESCUE); NCT03406104 (RESTORE); NCT03293524 (REFLECT); NCT03295071 (REALITY).

9.
Hum Mol Genet ; 32(4): 595-607, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36084042

RESUMEN

The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.


Asunto(s)
Distrofias Retinianas , Humanos , Mutación , Linaje , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Secuenciación Completa del Genoma , Grupo de Atención al Paciente , Análisis Mutacional de ADN/métodos , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
10.
Brain Sci ; 12(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36421866

RESUMEN

We report two patients, one with and one without long-term persistent tiling inside an arcuate macular scotoma. In both cases, the scotoma was caused by a cilioretinal artery occlusion. Both patients were almost identical regarding the location and extent of the scotoma. In both cases, there was a comparable degree of atrophy on optical coherence tomography for the retinal nerve fibre, ganglion cell, and inner plexiform layers. The main difference was the preservation of the inner nuclear layer in the patient with persistent tiling. In this patient, optical coherence angiography demonstrates preserved perfusion of the superior vascular plexus, which was not the case in the patient with the negative scotoma who also had atrophy of the inner nuclear layer. Recreational use of cannabinoid enhanced the intensity of perceived tiling in the relative scotoma of the first patient. A review of the literature suggests that the persistent tiling described in our case is different to teichopsias of retinal or cerebral origin. These data suggest that persistent monocular tiling in a scotoma arises from retinal circuit activity that requires the preservation of the inner nuclear layer. Future research should investigate this functional-structural relationship in other diseases, including glaucoma.

11.
NPJ Genom Med ; 7(1): 60, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266294

RESUMEN

The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects.

12.
Am J Ophthalmol ; 241: 9-27, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35469785

RESUMEN

OBJECTIVE: To evaluate the pattern of vision loss and genotype-phenotype correlations in WFS1-associated optic neuropathy (WON). DESIGN: Multicenter cohort study. METHODS: The study involved 37 patients with WON carrying pathogenic or candidate pathogenic WFS1 variants. Genetic and clinical data were retrieved from the medical records. Thirteen patients underwent additional comprehensive ophthalmologic assessment. Deep phenotyping involved visual electrophysiology and advanced psychophysical testing with a complementary metabolomic study. MAIN OUTCOME MEASURES: WFS1 variants, functional and structural optic nerve and retinal parameters, and metabolomic profile. RESULTS: Twenty-two recessive and 5 dominant WFS1 variants were identified. Four variants were novel. All WFS1 variants caused loss of macular retinal ganglion cells (RGCs) as assessed by optical coherence tomography (OCT) and visual electrophysiology. Advanced psychophysical testing indicated involvement of the major RGC subpopulations. Modeling of vision loss showed an accelerated rate of deterioration with increasing age. Dominant WFS1 variants were associated with abnormal reflectivity of the outer plexiform layer (OPL) on OCT imaging. The dominant variants tended to cause less severe vision loss compared with recessive WFS1 variants, which resulted in more variable phenotypes ranging from isolated WON to severe multisystem disease depending on the WFS1 alleles. The metabolomic profile included markers seen in other neurodegenerative diseases and type 1 diabetes mellitus. CONCLUSIONS: WFS1 variants result in heterogenous phenotypes influenced by the mode of inheritance and the disease-causing alleles. Biallelic WFS1 variants cause more variable, but generally more severe, vision and RGC loss compared with heterozygous variants. Abnormal cleftlike lamination of the OPL is a distinctive OCT feature that strongly points toward dominant WON.


Asunto(s)
Proteínas de la Membrana/genética , Enfermedades del Nervio Óptico , Estudios de Cohortes , Progresión de la Enfermedad , Estudios de Asociación Genética , Humanos , Nervio Óptico , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/genética , Tomografía de Coherencia Óptica/métodos
13.
Eye (Lond) ; 36(7): 1476-1485, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34244671

RESUMEN

BACKGROUND/OBJECTIVES: To re-evaluate diabetic papillopathy using optical coherence tomography (OCT) for quantitative analysis of the peripapillary retinal nerve fibre layer (pRNFL), macular ganglion cell layer (mGCL) and inner nuclear layer (mINL) thickness. SUBJECTS/METHODS: In this retrospective observational case series between June 2008 and July 2019 at Moorfields Eye hospital, 24 eyes of 22 patients with diabetes and optic disc swelling with confirmed diagnosis of NAION or diabetic papillopathy by neuro-ophthalmological assessment were included for evaluation of the pRNFL, mGCL and mINL thicknesses after resolution of optic disc swelling. RESULTS: The mean age of included patients was 56.5 (standard deviation (SD) ± 14.85) years with a mean follow-up duration of 216 days. Thinning of pRNFL (mean: 66.26, SD ± 31.80 µm) and mGCL (mean volume: 0.27 mm3, SD ± 0.09) were observed in either group during follow-up, the mINL volume showed no thinning with 0.39 ± 0.05 mm3. The mean decrease in visual acuity was 4.13 (SD ± 14.27) ETDRS letters with a strong correlation between mGCL thickness and visual acuity (rho 0.74, p < 0.001). CONCLUSION: After resolution of acute optic disc swelling, atrophy of pRNFL and mGCL became apparent in all cases of diabetic papillopathy and diabetic NAION, with preservation of mINL volumes. Analysis of OCT did not provide a clear diagnostic distinction between both entities. We suggest a diagnostic overlay with the degree of pRNFL and mGCL atrophy of prognostic relevance for poor visual acuity independent of the semantics of terminology.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Disco Óptico , Neuropatía Óptica Isquémica , Papiledema , Atrofia/patología , Diabetes Mellitus/patología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/patología , Humanos , Fibras Nerviosas/patología , Disco Óptico/patología , Neuropatía Óptica Isquémica/diagnóstico , Papiledema/diagnóstico , Papiledema/etiología , Células Ganglionares de la Retina/patología , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos
14.
Eye (Lond) ; 36(4): 818-826, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33911213

RESUMEN

BACKGROUND/OBJECTIVES: REALITY is an international observational retrospective registry of LHON patients evaluating the visual course and outcome in Leber hereditary optic neuropathy (LHON). SUBJECTS/METHODS: Demographics and visual function data were collected from medical charts of LHON patients with visual loss. The study was conducted in 11 study centres in the United States of America and Europe. The collection period extended from the presymptomatic stage to at least more than one year after onset of vision loss (chronic stage). A Locally Weighted Scatterplot Smoothing (LOWESS) local regression model was used to analyse the evolution of best-corrected visual acuity (BCVA) over time. RESULTS: 44 LHON patients were included; 27 (61%) carried the m.11778G>A ND4 mutation, 8 (18%) carried the m.3460G>A ND1 mutation, and 9 (20%) carried the m.14484T>C ND6 mutation. Fourteen (32%) patients were under 18 years old at onset of vision loss and 5 (11%) were below the age of 12. The average duration of follow-up was 32.5 months after onset of symptoms. At the last observed measure, mean BCVA was 1.46 LogMAR in ND4 patients, 1.52 LogMAR in ND1 patients, and 0.97 LogMAR in ND6 patients. The worst visual outcomes were reported in ND4 patients aged at least 15 years old at onset, with a mean BCVA of 1.55 LogMAR and no tendency for spontaneous recovery. The LOESS modelling curve depicted a severe and permanent deterioration of BCVA. CONCLUSIONS: Amongst LHON patients with the three primary mtDNA mutations, adult patients with the m.11778G>A ND4 mutation had the worst visual outcomes, consistent with prior reports.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Adolescente , Adulto , ADN Mitocondrial/genética , Europa (Continente) , Humanos , Mutación , Atrofia Óptica Hereditaria de Leber/diagnóstico , Atrofia Óptica Hereditaria de Leber/genética , Estudios Retrospectivos
15.
Mov Disord ; 37(4): 758-766, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936137

RESUMEN

BACKGROUND: Neurodegeneration affects the brain and peripheral nervous system in spinocerebellar ataxia type 3 (SCA3). As the retina is also involved, studying the retinal architecture in a cohort of patients could reveal clinically relevant biomarkers. OBJECTIVE: The aim is to investigate retinal architecture in SCA3 to identify potential biomarkers. METHODS: We evaluated 38 patients with SCA3 and 25 healthy age-matched controls, who underwent visual acuity assessment, intraocular pressure measurement, and fundoscopy and macular and peripapillary spectral domain optical coherence tomography (SD-OCT). We measured the peripapillary retinal nerve fiber layer (pRNFL) thickness in each quadrant of the temporal-superior-nasal-inferior-temporal chart and the macular layer thicknesses in each sector of the inner circle of the Early Treatment Diabetic Retinopathy Study (IC-ETDRS) grid. Linear regression analysis was employed to test the associations between retinal parameters and age, disease duration, CAG repeats, and SARA (Scale of the Assessment and Rating of Ataxia) and ICARS (International Cooperative Ataxia Rating Scale) scores in SCA3. RESULTS: In all sectors, except for the temporal quadrant, pRNFL was significantly thinner in SCA3 patients than in controls. Average total macular, ganglion cell layer (GCL), and inner plexiform layer (IPL) thicknesses were significantly decreased in SCA3 patients in comparison to controls. The average total macular thickness and the average thicknesses of RNFL, GCL, and IPL negatively correlated with ICARS scores, whereas average GCL and IPL thicknesses negatively correlated with SARA scores. CONCLUSIONS: The retinal ganglion cells, their dendrites, and axons are selectively affected in SCA3 patients. The RNFL, GCL, and IPL thicknesses in SD-OCT correlate with the clinical phenotype and represent potential biomarkers for future clinical trials and natural history studies. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Biomarcadores , Humanos , Enfermedad de Machado-Joseph/diagnóstico por imagen , Fibras Nerviosas , Retina/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía de Coherencia Óptica/métodos
17.
Invest Ophthalmol Vis Sci ; 62(15): 12, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34905022

RESUMEN

Purpose: To report novel genotypes and expand the phenotype spectrum of SSBP1-disease and explore potential disease mechanism. Methods: Five families with previously unsolved optic atrophy and retinal dystrophy underwent whole genome sequencing as part of the National Institute for Health Research BioResource Rare-Diseases and the UK's 100,000 Genomes Project. In silico analysis and protein modelling was performed on the identified variants. Deep phenotyping including retinal imaging and International Society for Clinical Electrophysiology of Vision standard visual electrophysiology was performed. Results: Seven individuals from five unrelated families with bilateral optic atrophy and/or retinal dystrophy with extraocular signs and symptoms in some are described. In total, 6 SSBP1 variants were identified including the previously unreported variants: c.151A>G, p.(Lys51Glu), c.335G>A p.(Gly112Glu), and c.380G>A, p.(Arg127Gln). One individual was found to carry biallelic variants (c.380G>A p.(Arg127Gln); c.394A>G p.(Ile132Val)) associated with likely autosomal recessive SSBP1-disease. In silico analysis predicted all variants to be pathogenic and Three-dimensional protein modelling suggested possible disease mechanisms via decreased single-stranded DNA binding affinity or impaired higher structure formation. Conclusions: SSBP1 is essential for mitochondrial DNA replication and maintenance, with defects leading to a spectrum of disease that includes optic atrophy and/or retinal dystrophy, occurring with or without extraocular features. This study provides evidence of intrafamilial variability and confirms the existence of an autosomal recessive inheritance in SSBP1-disease consequent upon a previously unreported genotype.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Genes Recesivos/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación Missense/genética , Atrofia Óptica/genética , Distrofias Retinianas/genética , Adolescente , Secuencia de Aminoácidos , Preescolar , Electrorretinografía , Femenino , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Conformación Molecular , Datos de Secuencia Molecular , Atrofia Óptica/diagnóstico , Linaje , Penetrancia , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Distrofias Retinianas/diagnóstico , Secuenciación Completa del Genoma
18.
Brain Commun ; 3(3): fcab162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34466801

RESUMEN

Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system.

19.
Front Neurol ; 12: 662838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108929

RESUMEN

Objective: This work aimed to compare the evolution of visual outcomes in Leber hereditary optic neuropathy (LHON) patients treated with intravitreal gene therapy to the spontaneous evolution in prior natural history (NH) studies. Design: A combined analysis of two phase three randomized, double-masked, sham-controlled studies (REVERSE and RESCUE) and their joint long-term extension trial (CLIN06) evaluated the efficacy of rAAV2/2-ND4 vs. 11 pooled NH studies used as an external control. Subjects: The LHON subjects carried the m.11778G>A ND4 mutation and were aged ≥15 years at onset of vision loss. Methods: A total of 76 subjects received a single intravitreal rAAV2/2-ND4 injection in one eye and sham injection in the fellow eye within 1 year after vision loss in REVERSE and RESCUE. Both eyes were considered as treated due to the rAAV2/2-ND4 treatment efficacy observed in the contralateral eyes. Best corrected visual acuity (BCVA) from REVERSE, RESCUE, and CLIN06 up to 4.3 years after vision loss was compared to the visual acuity of 208 NH subjects matched for age and ND4 genotype. The NH subjects were from a LHON registry (REALITY) and from 10 NH studies. A locally estimated scatterplot smoothing (LOESS), non-parametric, local regression model was used to modelize visual acuity curves over time, and linear mixed model was used for statistical inferences. Main Outcome Measures: The main outcome measure was evolution of visual acuity from 12 months after vision loss, when REVERSE and RESCUE patients had been treated with rAAV2/2-ND4. Results: The LOESS curves showed that the BCVA of the treated patients progressively improved from month 12 to 52 after vision loss. At month 48, there was a statistically and clinically relevant difference in visual acuity of -0.33 logarithm of the minimal angle of resolution (LogMAR) (16.5 ETDRS letters equivalent) in favor of treated eyes vs. NH eyes (p < 0.01). Most treated eyes (88.7%) were on-chart at month 48 as compared to 48.1% of the NH eyes (p < 0.01). The treatment effect at last observation remained statistically and clinically significant when adjusted for age and duration of follow-up (-0.32 LogMAR, p < 0.0001). Conclusions: The m.11778G>A LHON patients treated with rAAV2/2-ND4 exhibited an improvement of visual acuity over more than 4 years after vision loss to a degree not demonstrated in NH studies. Clinical Trial Registration: NCT02652767, NCT02652780, NCT03406104, and NCT03295071.

20.
Brain Commun ; 3(2): fcab063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056600

RESUMEN

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA